public class CorrelationCoefficients
extends java.lang.Object
| Modifier and Type | Class and Description | 
|---|---|
class  | 
CorrelationCoefficients.CorrelationInformation  | 
class  | 
CorrelationCoefficients.RankCorrelationInformation  | 
protected class  | 
CorrelationCoefficients.SpearmanRankNumberPair  | 
| Modifier and Type | Field and Description | 
|---|---|
protected java.lang.String | 
attrName1  | 
protected java.lang.String | 
attrName2  | 
protected java.lang.Object[] | 
dataArray  | 
protected double[] | 
means  | 
protected Feature[] | 
rawFeatures  | 
| Constructor and Description | 
|---|
CorrelationCoefficients(Feature[] features,
                       java.lang.String attr1,
                       java.lang.String attr2)  | 
| Modifier and Type | Method and Description | 
|---|---|
protected double | 
aritmeticMiddle(Feature[] features,
               int attr)  | 
static double | 
getDeviation(Feature[] features,
            java.lang.String attr,
            double mean)
Returns the deviation of the values of the given attribute. 
 | 
CorrelationCoefficients.RankCorrelationInformation | 
getKendalsTauRankCoefficient()
"Spearman Rank Order Correlations (or "rho")  and Kendall's Tau-b (or "tau") Correlations are used when the variables are measured as ranks (from highest-to-lowest or lowest-to-highest)"
  
http://www.themeasurementgroup.com/datamining/definitions/correlation.htm  | 
double | 
getMean(int nr)
Get the aritmetic middle for the nr-th attribut given 
 | 
CorrelationCoefficients.CorrelationInformation | 
getPearsonCoefficient()
get Pearson's correlation coefficient (good, dimension-less measure, if there is a linear relation between the attributes)
  
see: http://www.netzwelt.de/lexikon/Korrelationskoeffizient.html  | 
protected java.util.HashMap<java.lang.Integer,java.lang.Double> | 
getRank2SpearmanRankMap(java.lang.Object[] sortedValues,
                       java.util.HashMap<java.lang.Object,java.lang.Integer> value2NumAppearances)  | 
CorrelationCoefficients.RankCorrelationInformation | 
getSpearmansRhoCoefficient()
get Pearson's correlation coefficient (good, dimension-less measure, if there is a linear relation between the attributes)
  
see: http://www.netzwelt.de/lexikon/Korrelationskoeffizient.html  | 
protected double | 
getVariance(java.lang.String attr)  | 
protected CorrelationDataPair[] | 
initializeDataStorage(Feature[] features)  | 
protected java.lang.Object[] dataArray
protected java.lang.String attrName1
protected java.lang.String attrName2
protected double[] means
protected Feature[] rawFeatures
public CorrelationCoefficients(Feature[] features, java.lang.String attr1, java.lang.String attr2)
protected CorrelationDataPair[] initializeDataStorage(Feature[] features)
public static double getDeviation(Feature[] features, java.lang.String attr, double mean)
features - array containing the features we want the deviation forattr - name of the attribute to calculate the deviation formean - the mean for the given featuresjava.lang.IllegalArgumentException - if the attribute is not of a numerical typeFeatureCollectionToolsprotected double getVariance(java.lang.String attr)
protected double aritmeticMiddle(Feature[] features, int attr)
public double getMean(int nr)
nr - index number of attribut to calculate the mean forpublic CorrelationCoefficients.CorrelationInformation getPearsonCoefficient()
protected java.util.HashMap<java.lang.Integer,java.lang.Double> getRank2SpearmanRankMap(java.lang.Object[] sortedValues,
                                                                            java.util.HashMap<java.lang.Object,java.lang.Integer> value2NumAppearances)
public CorrelationCoefficients.RankCorrelationInformation getSpearmansRhoCoefficient()
public CorrelationCoefficients.RankCorrelationInformation getKendalsTauRankCoefficient()